The following figures contain information about how solar energy can be collected through the windows of a house. Figure 1 shows the percent of possible sunshine, Figure 2 the average outdoor temperature during the heating season, and Figure 3 the net heat gained (in British thermal units, Btu) per hour per square foot of window area.

Figure 1

*percent of possible sunshine = $\frac{\text{actual hours of direct sunlight}}{\text{possible hours of sunlight}} \times 100$

Figure 3

Single- and double-pane windows admit about the same amount of sunlight, but a single pane allows more heat to escape from the house than does a double pane.

- 1. According to the information in Figure 1, which of the following cities receives the LEAST percent of possible sunshine?
 - Albuquerque
 - B. Columbia
 - C. Louisville
 - New Orleans
- According to the information in Figure 3, the greatest heat gained through double-pane glass occurs in which of the following cities?
 - Albuquerque
 - Minneapolis G.
 - H. New Orleans
 - I. Phoenix
- 3. According to the data, the greatest net heat loss through a single-pane window occurred in which city?
 - Concord
 - Huron
 - C. Minneapolis
 - Phoenix
- 4. Indianapolis, Indiana, receives 51% possible sunshine and has an average temperature of 40.3°F during the heating season. On the basis of the data presented, the net heat gained by a double-pane window in Indianapolis would be approximately:
 - -15 Btu/hr/ft².
 7 Btu/hr/ft². F.
 - G.
 - 11 Btu/hr/ft² H.
 - J. 27 Btu/hr/ft²
- 5. Which of the following hypotheses about the relationship between the percent of possible sunshine and average outdoor temperature during the heating season is best supported by the data?
 - As the percent of possible sunshine increases, the average temperature decreases.
 - As the percent of possible sunshine increases, the average temperature increases.
 - The average temperature is not directly related to the percent of possible sunshine.
 - The percent of possible sunshine depends on the length of the heating season, rather than the average temperature.